Doc.No. 28-02-2011-AA-2594

April.2010

Flux Cored Wire for Super Duplex Stainless Steel *Ceweld*® AA-2594

Flux Cored Wire for Super Duplex Stainless Steel; AA-2594

AA-2594 is a flux cored wire designed for welding 25Cr type duplex stainless steels especially for Super Duplex grade, PRE (Pitting Resistance Equivalent) is over 40. Ar-CO2 mixture gas or 100%CO2 is recommended shielding gas for excellent weldability.

1. General instruction

1-1. Applicable code

AWS A5.22/A5.22M:2010 E2594T1-4, E2594T1-1

1-2. Applicable base metals

Examples of base metal to which AA-2594 is applied are presented in Table1. AA-2594 can be applied to 22Cr type duplex stainless steel (S31803, S32205) as well.

ASTM (UNS)	EN	JIS	Chemical composition	Commercial grade
S32750	1.4410	-	25Cr-7Ni-4Mo-0.28N	SAF2507, NAS74N
S32760	1.4501	-	25Cr-7Ni-3.8Mo-0.7Cu-0.7W-0.25N	Zeron100
S32506	-	SUS329J4L	25Cr-7Ni-3Mo-0.15N-0.2W	NAS64

Table 1	25Cr	type	duplex	stainless	steel
---------	------	------	--------	-----------	-------

1-3. Recommended welding conditions

AA-2594 is applicable not only at flat or horizontal fillet but horizontal or vertical up position. While either of Ar-20 to 25% CO2 and 100%CO2 can be used for shielding gas, Ar-20 to 25% CO2 is most recommended for best practice. Holding relatively shorter stick-out, 15-20mm helps easy operate. No preheat or post-weld heat treatment is recommended to prevent the formation of metallic compound e.g. sigma phase. For same reason, inter-pass temperature should be controlled less than 150°C.

Fig.1 Recommended welding conditions (Ar-20 to 25%CO2)

2. Properties of all-weld metal

An all-weld metal was produced per AWS A5.22/A5.22M:2010 "Specification for Stainless Steel Flux Cored and *Metal Cored Welding Electrodes and Rods*" and its chemical composition, mechanical properties and corrosion properties were evaluated.

2-1. Welding conditions

Welding conditions in producing all-weld metal are shown in Table2.

Table 2 Welding conditions for all weld metal							
Welding wire	AA-2594, 1.2mm <u>Mfg.No. J9H35113369</u>						
Polarity	DC-EP						
Welding position	Flat						
Shielding gas	Ar-20%CO2	A_{36} 20 mm \leq					
Welding current	200A						
Arc voltage		9.5mm					
Inter-Pass temperature	<150°C	2.51111					
Pass sequence	6 layers-12 passes	Beveled surface is buttered by AA-2594.					

2-2. Chemical composition of all-weld metal

Chemical compositions of all-weld metal are presented in Table3. Requirement for E2594TX-X in AWS A5.22/A5.22M:2010 is shown for reference.

	C	Si	Mn	Р	S	Cu	Ni	Cr
AA-2594	0.026	0.50	1.18	0.02	0.005	0.031	9.6	25.7
A5.22/A5.22M	0.04	1.00	0525	0.04	0.03	15	80105	240 270
E2594TX-X	-0.04	-1.00	0.3-2.3	-0.04	-0.05	-1.5	8.0-10.5	24.0-27.0
· · · · · · · · · · · · · · · · · · ·								
	Мо	Nb	W	Ν	PRE	FNW	FF	
AA-2594	3.79	0.016	<0.1	0.24	42.0	49	36	
A5.22/A5.22M	2 5-4 5	_	-10	0 20-0 30	_	_	_	
E2594TX-X	2.5-4.5	1.	-1.0	0.20-0.30	-	-	-	

Table 3 Chemical composition (%), PRE and ferrite content of all-weld metal

PRE: Cr+3.3Mo+16N

FNW: Ferrite Number (FN) by WRC1992 Diagram

FF: Ferrite Number (FN) by Ferrite Scope (Fischer Ferite Scope MP-30)

2-3. Tensile properties of all-weld metal

Tensile test result conducted at ambient temperature 20°C is presented in Table4.

	0.2% P.S.	T.S.	EL
	(N/mm ²)	(N/mm ²)	(%)
AA-2594	712	905	27
A5.22/A5.22M E2594TX-X	-	760 min.	15min.

Table 4 Tensile properties of all-weld metal

2-4. Charpy impact properties of all-weld metal

Charpy impact tests(10 x 10mm, 2mm V notch) were conducted at several temperatures from -50° C to 20° C. Absorbed energy and lateral expansion are presented in Table5.

Table 5 Absorbed Er	nergy and lateral	expansion at C	Charpy impact test
	01	1	

				—			
	@-85°C	@-70°C	@-50°C	@-40°C	@-20°C	@0°C	@20°C
CVN	23, 23, 23	27, 25, 26	35. 32, 33	39, 37, 42	53, 48, 42	56, 57, 51	61, 58,61
(J)	Avg. 23J	Avg. 26J	Avg. 33J	Avg. 39J	Avg. 48J	Avg. 55J	Avg. 60J
L.E.	0.16,0.0.28,0.20	0.27,0.25,0.21	0.34,0.0.37,0.31	0.40,0.28,0.42	0.62,0.55,0.56	0.79,0.59,0.61	0.83,0.79,0.77
(mm)	Avg. 0.21mm	Avg. 0.24mm	Avg. 0.34mm	Avg. 0.37mm	Avg. 0.58mm	Avg. 0.66mm	Avg.0.80mm

Fig.2 Charpy impact test results of all-weld metal

2-5. Copper-Copper Sulfate-Sulfuric Acid Test (ASTM A262, Practice E)

Copper-Copper Sulfate-Sulfuric Acid Test (Strauss test) based on ASTM A262 Practice E was carried out on a specimen taken from all-weld metal. The bent specimen was examined by optical microscope to determine the presence of fissures or cracks due to intergranular attack.

Table 6 Test condition and result in Copper-Copper Sulfate-Sulfuric Acid Test

Size of Specimen	Test Solution	Time of exposure	Evaluation
5 x 25 x 75 mm	$6\% CuSO_4 + 16\% H_2SO_4$	15 hrs	Satisfactory
	solution aq.	15 118	(No crack)

2-6. Nitric Acid Test (*ASTM A262*, *Practice C*)

Nitric Acid Test (Huey Test) based on ASTM A262 Practice C was carried out on a specimen taken from all-weld metal. For consistent result, test was carried out five times repeatedly for 48 hours with a fresh test solution.

Table 7 Test condition in Nitric Acid Test

Size of Specimen	Initial weight	Test Solution	Boiling period
3 x 20 x 30mm (15cm ²)	13.91 g	Boiling 65% HNO ₃ solution aq.	48 hrs

Table 8 Loss of weight

No.	1 st	2 nd	3 rd	4 th	5 th	Average
$(g/m^2 hr)$	0.13	0.15	0.20	0.26	0.29	0.21
(ipm)	0.00046	0.00054	0.00073	0.00092	0.00104	0.00074

2-7. Ferric Chloride Test

2-7-1. ASTM G48 Practice E "Critical pitting temperature test for stainless steels"

Critical Pitting Temperature (CPT) was determined as 40°C by ASTM G48 Practice E "*Critical pitting temperature test for stainless steels*".

	0	······································	
Size of Specimen	Test Solution	Time of exposure	CPT (°C)
3 x 20 x 30mm	6%FeCl3 + 1%HCl solution aq.	24 hrs	40

Table 9 Pitting Corrosion Test result by G48

2-7-2. ASTM A923 Practice C "Ferric Chloride Corrosion Test for Classification of structures of Duplex Stainless Steels"

No corrosion loss took place at the specimen exposed in 6%FeCl3 solution aqua which pH is controlled at 1.3 at 40° C for 24 hours.

Table10 Test condition and corrosion rate per A923

Size of Speeimen	Test Solution	Time of	Test temperature	Corrosion rate	
Size of Specifien	Test Solution	exposure	(°C)	(mdd)	
5 x 25 x 50mm	6%FeCl3 + HCl solution	24 hrs	40	0.00	
5 x 25 x 50mm	aq. (pH = 1.3)	24 mrs	40	0.00	

2-8. Microstructure of all-weld metal

Mirror polished specimen of all-weld metal was electrically etched in chromium acid. Its microstructure is shown in Fig.3.

Fig.3 Microstructure of all-weld metal AA-2594

* PRE: Cr+3.3Mo+16N, **PREW: Cr+3.3(Mo+1/2W) +16N

3. Properties of butt joint

V-groove butt weld joints of super duplex stainless steels were produced by A-2594 at different positions; flat, horizontal and vertical-up. Ar-20%CO2 was applied as shielding gas.

3-1. Base metals

Two different kinds of grade of super duplex stainless steel were prepared. One is 13mm thick S32750 grade, and the other is 20mm thick S32760 grade.

Grade	C	Si	Mn	Р	S	Cu	Ni	Cr	Mo	W	N	PRE	PREW
S32750	0.019	0.38	0.70	0.021	0.001	0.09	7.0	25.6	3.8	0.09	0.28	42.6	42.8
S32760	0.025	0.32	0.71	0.022	0.001	0.60	7.0	25.4	3.5	0.6	0.21	40.3	41.3

Table11	Chemical	compositions of base metals ((%))
rauterr	Chemical	compositions of base metals	/0	,

3-2. Welding conditions

Table12 Welding condition (Base metal \$32750)

Groove preparation	Position	Side	Layers and passes	Welding current (A)	Arc voltage (V)	Inter-pass temp. (°C)
		Face	3 layers -3 passes	200	30	<150
	Flat	Back	1 layer -1 pass	rers and assesweiding current (A)Arc voltage (V)In in voltage (V)layers passes20030layer passes20030layer passes20030layers passes $1^{st}-9^{th}:200$ 28layers passes $1^{st}-9^{th}:200$ 28layers passes $1^{st}-9^{th}:200$ 28layers passes $1^{st}-6^{th}:200$ 28layers passes $1^{st}-6^{th}:200$ 28layers passes $1^{st}-6^{th}:200$ 28layers passes 1^{60} 26layer passes 160 26	<150	
13 3 55 °	Horizontal	Face	4 layers -10 passes	1 st -9 th :200 10 th :160	28 26	<150
		Back	3 layers -7 passes	1 st -6 th :200 7 th :160	28 26	<150
	Vertical-up	Face	2 layers -2 passes	160	26	<150
5 7	, ender-up	Back	1 layer -1 pass	160	26	<150

Groove preparation	Position	Side	Layers and	Welding current	Arc voltage	Inter-pass temp.
		Face	5 layers -8 passes	(A) 200	(V) 30	<150
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 layers -2 passes	200	30	<150	
20 3 55°		Face	4 layers -12 passes	1 st -11 th :200 12 th :160	28 26	<150
	Horizontal	Back	3 layers -8 passes	1 st -7 th :200 8 th :160	28 26	<150
		Face	4 layers -5 passes	160	26	<150
	verncai-up	ical-up Back -1 pass 160	26	<150		

Table13 Welding condition (Base metal S32760)

3-3. Appearance and cross sectional view of weld joint

Weld bead appearances and macro structures of cross sections of welding joints are presented in Table14-1 and Table14-3 respectively. Ferrite number (FN) measured by Ferrite Scope at the surface of final weld bead on face side was also shown in Table14-2 and Table14-4. Average value among 10 measurements is reported.

Position	Weld bead (face side)	Cross sectional macro structure
Flat	5 6 7 8 9320 1 2 3 4 5 6	
Horizontal	56789320123456	
Vertical-up		

Table14-2 Ferrite Number (FN)

Position	Flat	Horizontal	Vertical-up	
FN	37	36	33	

Position	Weld	bead (face si	de)		C	ross sectional m	acro structure
Flat	234567	8 9 3 20 1 2	3456		5 7	8 D 6	
Horizontal	5678	9 320 1	23	4	56		
Vertical-up		Table	6 4 € 7 1 1030 6 ∞ 2 1 1000 6 ∞ 2 1 1000 6 ∞ 2 1 1000 6 ∞ 2 1 1000	ite Nu	3 7 mber (FN		
	Posit	ion I	Flat	Hor	izontal	Vertical-up	

Table14-3 Weld bead appearance and macrostructure (Base metal: S32760)

39

35

36

FN

3-4. Radiographic test of weld joint

Weld joint was subject to radiographic test to evaluate the soundness of the weld metal. Both ends were exempt and 200mm length of the center of the weld bead was evaluated.

Desition	S32750 by	AA-2594	S32760 by AA-2594		
Position	Liner indication	Round indication	Liner indication	Round indication	
Flat	None	<1mm x 1	None	<1mm x 1	
Horizontal	None	<1mm x 3	None	<1mm x 5	
Vertical-up	None	None	None	None	

Table15	Radiographic	test
---------	--------------	------

3-5. Side-bend test of weld joint

Side-bend test was conducted in accordance with AWS B4.0/4.0M with the test piece thickness, t=10mm (2/5in.) as bending radius is equal to 3t. Test piece was bended 180 degrees. Bended surfaces in 3 pieces from each welding position were examined and results are shown in Table16-1 and 16-2.

No.	Test	Bended specimen	Defect	Result
	piece			
Flat	1st		None	Satisfactory
	2nd		0.5mm x 1	Satisfactory
	3rd	5 6 7 8 9 5 1 2 3 4 5 6	0.5mm x 1	Satisfactory
	1st		0.5mm x 1	Satisfactory
Horizontal	2nd		None	Satisfactory
	3rd		0.5mm x 1	Satisfactory
	1st		0.5mm x 1	Satisfactory
Vertical-up	2nd		None	Satisfactory
	3rd	4 5 6 7 8 C73 - 1 2 3 4 5 0	None	Satisfactory

Table16-1 Side bend test result (S32750/ AA-2594)

No.	Test piece	Bended specimen	Defect	Result
	1st		0.5mm x 1	Satisfactory
Flat	2nd		0.5mm x 1	Satisfactory
	3rd	3 4 5 6 7 8 <mark>Cel-1</mark> 2 3 4 5 6	None	Satisfactory
	1st		0.5mm x 2	Satisfactory
Horizontal	2nd		0.5mm x 1	Satisfactory
	3rd			
	1st		None	Satisfactory
Vertical-up	2nd		None	Satisfactory
	3rd	345678 003234567	0.5mm x 2	Satisfactory

Table16-2 Side bend test result (S32760/ AA-2	594)
---	------

3-6. Charpy impact test

Charpy impact test was conducted in accordance with AWS B4.0/4.0M. Test piece was taken from the center of the plate so that the notch locates in the center of the weld metal.

Desition	Test piece location	Test temp.	Absorbed Energy	Lateral Expansion
POSITION	in the weld metal	(°C)	(J)	(mm)
Elet		20°C	62, 69, 70 Avg. 67 J	0.72, 0.84, 0.80 Avg. 0.79mm
Tiat	78 DC1123	-40°C	51, 48, 57 Avg. 52 J	0.57, 0.54, 0.59 Avg. 0.57mm
		20°C	58, 60, 63 Avg. 45 J	0.60, 0.60, 0.53 Avg. 0.58mm
Horizontai		-40°C	37, 40, 41 Avg. 39 J	0.31, 0.33, 0.24 Avg. 0.29mm
· Vertical-up		20°C	81, 84, 75 Avg. 80 J	0.96, 0.94, 0.94 Avg. 0.95mm
	5 7 8 0 7 3 1 2 3	-40°C	56, 52, 52 Avg. 53 J	0.43, 0.47, 0.58 Avg. 0.49mm

Table17-1 Charpy impact test result (S32750/ AA-2594)

Position	Test piece location in the weld metal	Test temp. (°C)	Absorbed Energy (J)	Lateral Expansion (mm)
Flat		20°C	56, 56, 48 Avg. 53 J	0.50, 0.65, 0.42 Avg. 0.49mm
		-40°C	38, 41, 36 Avg. 38 J	0.27, 0.33, 0.37 Avg. 0.32mm
		20°C	63, 68, 66 Avg. 66 J	0.64, 0.62, 0.69 Avg. 0.65mm
nonzontai		-40°C	54, 46, 49 Avg. 50 J	0.47, 0.39, 0.45 Avg. 0.44mm
Vertical-up		20°C	74, 76, 83 Avg. 78 J	0.87, 0.91, 0.93 Avg. 0.90mm
	78003123 4	-40°C	46, 49, 44 Avg. 37 J	0.39, 0.46, 0.41 Avg. 0.42mm

Table17-2 Charpy impact test result (S32760/ AA-2594)

3-7. Transversal tensile test

Transverse tensile test was conducted in accordance with AWS B4.0/4.0M.

		Table18 Transv	erse tensile test	result
No.	Size	Tensile stress	Fractured	Appearance of test specimen
S32750 Flat	13 x 25mm (t x w)	873	Base metal	
S32750 Horizontal	13 x 25mm (t x w)	866	Base metal	
S32750 Vertical-up	13 x 25mm (t x w)	862	Base metal	
S32760 Flat	20 x 25mm (t x w)	799	Base metal	
S32760 Horizontal	20 x 25mm (t x w)	788	Base metal	
S32760 Vertical-up	20 x 25mm (t x w)	785	Base metal	0 0 000 1 2 3 4 5 6 7 6 0 000 1 2 000 1 2 000 1 2 0 5 6 7 6 0 000 1 2 0 5 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 7 6 0 000 1 2 0 5 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 6 7 6 0 000 1 2 0 5 6 7 6 0 000 1 2 0 0 000 1 0 0 000 1 0 0 000 1 0 0 000 1 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15

3₁8. Microstructure

Fig.4-1 Microstructure of weld joint (S32750, Horizontal position)

Fig.4-2 Microstructure of weld joint (S32760, Horizontal position)

Doc.No. 28-02-2011-AA-2594

3-9. Hardness test

Vickers hardness test was conducted every 1mm along the lines shown in Fig.5-1 to 5-6. 10kgf was loaded for 15sec in the test.

Fig.5-1 Vickers hardness distribution across the weld (S32750, Flat position)

Fig.5-2 Vickers hardness distribution across the weld (S32750, Horizontal position)

Fig.5-3 Vickers hardness distribution across the weld (S32750, Vertical-up position)

Doc.No. 28-02-2011-AA-2594

Fig.5-4 Vickers hardness distribution across the weld (S32760, Flat position)

Fig.5-5 Vickers hardness distribution across the weld (S32760, Horizontal position)

Fig.5-6 Vickers hardness distribution across the weld (S32760, Vertical-up position)

4. Summary

AA-2594 is a flux cored wire for welding 25Cr type duplex stainless steel, especially for super duplex grade. 25Cr-9Ni-3.7Mo-0.25N type chemical composition of all-weld metal ensures PRE>40 and its well-balanced ferrite and austenite in microstructure contribute to excellent corrosion resistance and sound mechanical properties.

AA-2594 can be applied at all positions by selecting proper welding condition. It is suggested that heat input is controlled within moderate range, generally guided as 5-25KJ/cm, to obtain optimized microstructure or prevent the formation of metallic compound detrimentally affecting toughness and corrosion resistance in weld metal and heat affected zone.

(Complete)

Appendix; Welding Parameters

<u> / </u>		ung i urun	neiers				
-			Table 1	9-1 Base: S32750	, Position: F	lat	
	Position	Side	Pass	Current (A)	Voltage (V)	Speed (cm/min)	Heat input (KJ/cm)
			1			39	9.2
	Flat	Face	2	200	20	29	12.4
	(1G)		3	200	30	23	15.7
	-	Back	1	-		23	15.7

		Table 19-2	Base: S32750, P	osition: Horizo	ontal	
Position	Side	Pass	Current (A)	Voltage (V)	Speed (cm/min)	Heat input (KJ/cm)
		1			29	11.6
		2			60	5.6
		3			52	6.5
		4			67	5.0
1	Ī	5	200	28	55	6.1
	Face	6			41	8.2
		7			52	6.5
		8			48	7.0
Horizontal		9			48	7.0
(20)		10			35	9.6
		11	160	26	40	6.2
		1			56	6.0
		2			52	6.5
		3	200	20	68	4.9
	Back	4	200	20	65	5.2
		5			54	6.2
		6			50	6.7
		7	160	26	65	3.8

		Table 19-3	Base: \$32750, Po	sition: Vertica	l up	
Position	Side	Pass	Current (A)	Voltage (V)	Speed (cm/min)	Heat input (KJ/cm)
Vertical up (3G)	Face	1	160	26	11	22.7
	Face	2	100	20	12	20.8
	Back	1	140	24	17	11.9

		Table 1	9-4 Base: S32760,	Position: Fla	ţ	
Position	Side	Pass	Current (A)	Voltage (V)	Speed (cm/min)	Heat input (KJ/cm)
Flat		1			37	9.7
		2		30	26	13.8
	Face	3	- 200		35	10.3
		4			40	9.0
		5			37	9.7
(1G)		6			33	10.9
		7			29	12.4
		8			31	11.6
	Dealr	1	-		26	13.8
	Баск	2	-	•	32	11.3

Table 19-5 Base: S32760, Position: Horizontal

Position	Side	Pass	Current (A)	Voltage (V)	Speed (cm/min)	Heat input (KJ/cm)
		1			28	12.0
		2			40	8.4
		3			27	12.4
		4			44	7.6
		5			39	8.6
	Face	6	200	28	29	11.6
	Tuee	7			47	7.1
		8			43	7.8
		9			43	7.8
Horizontal		10			28	12.0
(2G)		11			45	7.5
		12	160	26	58	4.3
		1			58	5.8
		2			71	4.7
		3			50	6.7
	Back	4	200	28	54	6.2
	Dack	5			47	7.1
		6			43	7.8
		7			44	7.6
		8	160	26	63	4.0

Position	Side	Pass	Current	Voltage	Speed	Heat input
			(A)	(V)	(cm/min)	(KJ/cm)
Vertical up		1			13	19.2
		2			14	17.8
	Face Back	3	160	26	11	22.7
		4			15	16.6
(3G)		5			15	16.6
		1			16	15.6
		2			15	16.6
		3		I	15	16.6

Table 19-6 Base: S32760, Position: Vertical up

<u>Appendix2</u>

Properties of all-weld metal with 100% CO2 shielding gas

1. Welding conditions

Welding conditions in producing all-weld metal with 100%CO2 are shown in Table20.

	Table20 Welding conditio	ns for all-weld metal
	AA-2594, 1.2mm Mfg.No. J9H35113369	
Polarity	DC-EP	4.5
Welding position	Flat	
Shielding gas	100%CO2	20 mm
Welding current	200A	
Arc voltage	32V	9.5mm
Inter-Pass temperature	<150°C	
Pass sequence	6 layers-12 passes	Beveled surface is buttered by AA-2594.

2. Chemical composition of all-weld metal

Table 21 Chamical com	\mathbf{DDE}	and forrito contant	of all wold motal
Table21 Chemical com	iposition (70), FKE a	and terme content	of all-weld metal

	С	Si	Mn	Р	S	Cu	Ni	Cr
AA-2594	0.027	0.40	1.06	0.019	0.004	0.030	9.6	25.0
A5.22/A5.22M E2594TX-X	-0.04	-1.00	0.5-2.5	-0.04	-0.03	-1.5	8.0-10.5	24.0-27.0

	Мо	Nb	W	N	PRE	FNW	FF
AA-2594	3.75	0.016	<0.1	0.23	41.1	45	34
A5.22/A5.22M E2594TX-X	2.5-4.5	-	-1.0	0.20-0.30	-	-	-

PRE: Cr+3.3Mo+16N

FNW: Ferrite Number (FN) by WRC1992 Diagram

FF: Ferrite Number (FN) by Ferrite Scope (Fischer Ferite Scope MP-30)

Doc.No. 28-02-2011-AA-2594

3. Tensile properties of all-weld metal

Tensile test result conducted at ambient temperature 20°C is presented in Table22.

	0.2% P.S.	T.S.	EL
	(N/mm^2)	(N/mm^2)	(%)
AA-2594	690	886	20
A5.22/A5.22M E2594TX-X	-	760 min.	15min.

|--|

4. Charpy impact properties of all-weld metal

Charpy impact tests (10 x 10mm, 2mm V notch) were conducted at several temperatures at -40° C. Absorbed energy and lateral expansion are presented in Table23.

Table23 Absorbed Energy and lateral expansion at Charpy impact test

	@-
	40°C
CVN (J)	50, 50, 43, Avg. 47J
L.E. (mm)	0.43, 0.54, 0.34, Avg. 0.44mm

5. Ferric Chloride Test of all-weld metal by ASTM G48 Practice E

Critical Pitting Temperature (CPT) was determined as 40°C by ASTM G48 Practice E "*Critical pitting temperature test for stainless steels*".

Table24	Pitting	Corrosion	Test result	by G48
1001024	1 mmg	COLIOSION	10st result	0,040

Size of Specimen	Test Solution	Time of exposure	CPT (°C)	
3 x 20 x 30mm	6% FeCl3 + 1% HCl	24 hrs	40	
	solution aq.			